Lindavia ocellata

(Pantocsek) Nakov, Guillory, M.L.Julius, E.C.Ther. and A.J.Alverson 2015      Category: Centric
BASIONYM: Cyclotella ocellata Pantocek

Lindavia michiganiana

 

Lindavia praetermissa

LM scalebar = 10 µm = 80 pixels.



Observations

Contributor: David R.L. Burge | Mark Edlund | Kalina Manoylov | Nadja Ognjanova-Rumenova | Paul Hamilton - December 2016
Diameter: 3.7-15 µm
Rows of areolae in 10 µm: 15-30 based on circumferential density

Description

Valves are circular with a central area spanning 1/3-2/3 of the valve face, surrounded by alveolate striae of varying length. The central area is ornate with orbiculi depressi and complementary elevated papillae, each occurring 2-6 per valve. The central area is often smooth, but it can be colliculate. Alveolate striae open externally via small areolae arranged in multiseriate rows. The rows comprise 1-2 radial striae of small areolae between 2 striae composed of larger areolae. Alveolae open internally though a large circular to oval foramen at the valve face/mantle junction. The number of fascicles per valve is 35-75, with a relation to valve size. Fascicle count is related to valve diameter (total fascicle count = 2.94 * (diameter) + 27.1). For example: (diameter, total fascicles); 15,68; 6.3,42; 3.7,35. Fascicles are separated internally by costae that occasionally branch with new rows of fascicles between the branches. One to 3 central fultoportulae occur near the orbicular depressions, with simple round external openings. Marginal fultoportulae occur every 4–5 costae. A single rimoportula occurs on a costae. A ring of spinules is present along the valve face/mantle junction and may have additional small conic spines scattered beneath.

Lindavia ocellata is part of a species complex comprising L. polymorpha, L. rossii, L. kuetzingiana, and their allies (Håkansson 2002). These species are often sympatric and may have no apparent morphological differences (Knie & Hübener 2007), therefore they may be indistinguishable in LM. The species share similar ornamentation in the central area. Traditionally, L. ocellata is thought to have only three orbiculi depressi and papillae, however several studies have shown the number of orbiculi depressi and papillae to be 2 to 6, the central area to vary from smooth to colliculate and a variable relative diameter of the central area (Kiss et al. 1999, Dudela 2016). Using combinations of the number of orbiculi depressi, central area size, and central area shape, Cvetkoska et al. (2012) distinguished 22 morphotypes of L. ocellata from a sediment core of Lake Ochrid, Macedonia. The range of valve sizes is high in L. ocellata. Edlund et al. (2003) observed valves from 2.5 to 43 µm diameter and a wide and multimodal range of initial valve size (9 to 43 µm) within a single L. ocellata population (Lake Hövsgöl, Mongolia), extending the known size range of L. ocellata. Genkal and Popovskaya (2008) similarly found different sized subpopulations of L. ocellata in the same lake.



Original Description

Basionym: Cyclotella ocellata
Author: Pantocek
Diameter: 12.5-13.0 µm
Rows of areolae in 10 µm:

Original Description

  1. Cyclotella ocellata PANT. n. s. Valvis circularibus, 12·5—13 μ in diametro, marginatis ; margine 1·8—2 μ lato, striolato ; striis abbreviatis, radiantibus ; area centralis nuda, margaritis majoribus plerumque 3, in forma trianguli dispositis, ornata. Seeschlamm bei : Siófok, Überfuhr bei Puszta-Szántód (tb. XV, fig. 318).

Original Images


Cite This Page:
Burge, D., Edlund, M., Manoylov, K., Ognjanova-Rumenova, N., and Hamilton, P. (2016). Lindavia ocellata. In Diatoms of the United States. Retrieved November 22, 2017, from http://westerndiatoms.colorado.edu/taxa/species/lindavia_ocellata

Species: Lindavia ocellata

Contributor: David R.L. Burge | Mark Edlund | Kalina Manoylov | Nadja Ognjanova-Rumenova | Paul Hamilton

Reviewer: Euan Reavie

Citations

Camburn, K.E. and Charles, D.F. (2000). Diatoms of Low-Alkalinity Lakes in the Northeastern United States. Academy of Natural Sciences of Philadelphia, Special Publication 18, 152 pp.

Cvetkoska, A., Reed, J. M., & Levkov, Z. (2012). Diatoms as indicators of environmental change in ancient Lake Ohrid during the last glacial-interglacial cycle (ca. 140 ka). In: Diatom Monographs Vol. 15. (A. Witkowski, ed.). Koeltz Scientific Books. 224pp.

Duleba, M., Kiss, K. T., Földi, A., Kovács, J., Borojević, K. K., Molnár, L. F., Plenkovic-Moraj, A., Pohner, Z., Solak, C.N., and Ács, É. (2015). Morphological and genetic variability of assemblages of Cyclotella ocellata Pantocsek/C. comensis Grunow complex (Bacillariophyta, Thalassiosirales). Diatom Research, 30(4), 283-306. 10.1080/0269249X.2015.1101402

Edlund, M.B., Willlams, R.M., & Soninkhishig, N. (2003). The planktonic diatom diversity of ancient Lake Hovsgol, Mongolia. Phycologia, 42(3), 232-260.

Fallu, M.-A., Allaire, N. and Peinitz, R. (2000). Freshwater diatoms from northern Québec and Labrador (Canada). Species-environment relationships in lakes of boreal forest, forest-tundra and tundra regions. Bibliotheca Diatomologica 45: 1-200.

Genkal, S. and Popovskaya, G. (2008). Morphological variability of Cyclotella ocellata from Lake Khubsugul (Mongolia). Diatom Research 23: 75-91. 10.1080/0269249X.2008.9705738

Håkansson, H. (2002). A compilation and evaluation of species in the genera Stephanodiscus, Cyclostephanos and Cyclotella with a new genus in the family Stephanodiscaceae. Diatom Research 17: 1-139. 10.1080/0269249X.2002.9705534

Knie, M. and Hübener, T. (2007). Morphological variability of the Cyclotella ocellata-krammeri-rossii complex in field samples and cultures. Proceedings of the 1st Central European Diatom Meeting. Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin. 10.3372/cediatom.117

Nakov, T., Guillory, W.X., Julius, M.L., Theriot, E.C. and Alverson, A.J. (2015). Towards a phylogenetic classification of species belonging to the diatom genus Cyclotella (Bacillariophyceae): Transfer of species formerly placed in Puncticulata, Handmannia, Pliocaenicus and Cyclotella to the genus Lindavia. Phytotaxa 217 (3): 249–264. 10.11646/phytotaxa.217.3.2

Pantocsek, J. (1892). Beiträge zur Kenntnis der Fossilen Bacillarien Ungarns. 3 Teile. Julius Platzko, Nagyy-Tapolcsany. Teil III, Susswasser Bacillarien. Anhang-analysen 15 neuer Depots von bulgarien, Japan, Mahern, Russland und Ungarn. Nagy-Tapolcsány, Buchdrucherei von Julius Platzko.

Pérez‐Martínez, C., Cruz‐Pizarro, L. and Sánchez‐Castillo, P. (1992). Auxosporulation in Cyclotella ocellata (Bacillariophyceae) under natural and experimental conditions . Journal of Phycology 28(5): 608-615.

Reavie, E.D. and Kireta, A.R. (2015). Centric, Araphid and Eunotioid Diatoms of the Coastal Laurentian Great Lakes. Bibliotheca Diatomologica 62:1-184.

Reavie, E.D. and Smol, J.P. (1998). Freshwater diatoms from the St. Lawrence River. Bibliotheca Diatomologica Band 41. J. Cramer, Berlin. 137 pp.

Stoermer, E. F. and Yang, J. J. (1969). Plankton diatom assemblages in Lake Michigan. Univ. Michigan, Great Lakes Res. Div. Spec. Rep. No. 47, 168 pp.

Wunsam, S., Schmidt, R. and Klee, R. (1995). Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences 57: 360-386.

Links & ID's

Index Nominum Algarum (INA)

Original INA

California Academy of Sciences (CAS)

Lindavia ocellata CAS

North American Diatom Ecological Database (NADED)

NADED ID:

Autecology Discussion

Lindavia ocellata, reported as Cyclotella ocellata, has moderate chloride and total phosphorus optima in the Laurentian Great Lakes (Reavie and Kireta 2015). It has been reported as rare in epilithic and planktonic samples of the St. Lawrence River (Reavie and Smol 1998), lakes of Labrador and Québec (Fallu et al. 2000) and low alkalinity lakes in the northeastern United States (Camburn and Charles 2000). Lindavia ocellata occurs across a range of lake types, from deep to shallow lakes, under ultraoligotrophic (Stoermer and Yang 1969) to mesotrophic conditions (Wunsam et al. 2012).

Pérez-Martínez et al. (1992) found that auxosporulation could be induced with phosphorus additions, and they suggested that L. ocellata auxosporulation may be a resting stage to enable a population to persist during adverse conditions.

Images

Distribution of Lindavia ocellata in rivers of the continental U.S. based on the National Water Quality Assessment program. Retrieved 13 June 2016.

Credit/Source: USGS BioData & GoogleEarth

Distribution of Lindavia ocellata in rivers of the continental U.S. based on the National Water Quality Assessment program. Retrieved 13 June 2016.

Credit/Source: USGS BioData & GoogleEarth